of 3

Robert Close- Why bring back the aether?

Description
Why
bring
back
the
aether?
 
 
Robert
Close
 (robert.close@classicalmatter.org)
 
 First
of
all,
let’s
be
clear
that
by
the
term
“aether”
(sometimes
confusingly
spelled
as
 “ether”),
we
do
not
mean
a
new
form
of
matter.
Rather,
the
aether
is
simply
another
 name
for
the
“vacuum”
or
“space”
which
is
assumed
not
to
be
empty
or
void
but
to
 have
physical
properties
that
enable
the
existence
of
matter
and
determine
its
 physical
properties.
 
 The
motivation
for
considering
the
existence
of
an
aethe
Transcript
  Whybringbacktheaether? RobertClose(robert.close@classicalmatter.org)Firstofall,let’sbeclearthatbytheterm“aether”(sometimesconfusinglyspelledas“ether”),wedonotmeananewformofmatter.Rather,theaetherissimplyanothernameforthe“vacuum”or“space”whichisassumednottobeemptyorvoidbuttohavephysicalpropertiesthatenabletheexistenceofmatteranddetermineitsphysicalproperties.Themotivationforconsideringtheexistenceofanaethermaybesummedupinonesimplequestion:WhyistheequationforwavesonastringLorentz‐covariant?TheanswerobviouslydoesnotbeginwithEinstein’spostulatethatdifferentlymovingobserversmeasureasingle,constantspeedofwavesonastring(orlightinavacuum).YettheonlytheoreticalrestrictionimposedbythespecialtheoryofrelativityisthatequationsofmatterbeLorentz‐covariant.Soanyonelookingforatheoryofmattershouldask,“HowcanIderiveaLorentz‐covarianttheory?”or“WheredoLorentz‐covarianttheoriescomefrom?”TheobviousansweristhatLorentzcovarianceisapropertyofwavesinGalileanspace‐time,withthekeypropertybeingalinearrelationshipbetweenthecurvature(orLaplacian)andthesecondtimederivativeofafielddescribingtheperturbation.Asfarasspecialrelativitygoes,aninterpretationofmatteraswavesinadeformablemediumoffersanexplanationforEinstein’spostulate:differentlymovingobserversmustusewavestomaketheirmeasurements.Sincethesewavespropagateatthesamespeedaslight,itisimpossibletomakeanindependentmeasurementoftheactualspeedoflight.Inotherwords,allmeasurementsoflengthareequivalenttomeasuringlightpropagationtime,andthespeedoflightisreducedtoaconversionfactorbetweentheunitsoftimeandlength.Thisfactisacknowledgedbythemoderndefinitionofthemeterasthedistancelighttravelsin(1/ c )seconds.Hencewithaethertheory,specialrelativityisaderivedpropertyofmeasurementsratherthananaposterioriprincipleinventedtoexplainexperimentalobservations.Ofcourse,thereismoretophysicsthanspecialrelativity.Asuccessfultheoryofmattermustalsoexplainthequantumbehaviorofparticlesandgravity.Gravityiseasilyunderstoodintermsofanaether,sincegeneralrelativityattributesphysicalproperties(suchascurvature)toemptyspace.Manyauthorshaveinterpretedgravityasbeingequivalenttowaverefractioninavariablemedium.Einsteinhimselfwrote,“Accordingtothegeneraltheoryofrelativity,spacewithoutetherisunthinkable.”  Themainshortcomingofaethertheoryhasbeenthelackofamechanisticexplanationofquantummechanics.Withthestatisticalsuccessesofsuccessivequantumtheories,physicistshavealmostcompletelyabandonedattemptstoformulateamechanistictheoryforthebehaviorofmatter.Yettheabsenceofamechanistictheoryonlymeansthatsuchatheoryhasnotbeenfound(asCarlSaganoncesaid,“lackofproofisnotproofoflack”).Thereisnoreasontothinkthatsuchatheoryisnotpossible.Indeed,recentdevelopmentsofferpromisethatsuchatheorymaybeimminent.Booksonquantummechanicsoftenpointoutthatthetheoryexplainsphenomenathathadnotpreviouslybeenexplainedbyclassicalphysics.Thisistrue.Butoneshouldask why  classicalphysicsfailedtoexplainthesephenomena.Wasitbecauseclassicalmodelsareintrinsicallyill‐suitedtodescribingnature?Orwasitbecauserealisticclassicalmodelsweretoocomplicatedforphysiciststoanalyze?Thehistoricalevidencepointstothelatterexplanation.TheearliestconceptionoftheaetherconsistentwiththebehavioroflightwaveswasThomasYoung’sobservationthatlightseemedtobehaveliketransversewavesinanelasticsolid.Thistheorywassuccessfullyappliedtothestudyoflightbyahostofnow‐famous19 th centuryscientists,withcontributionsfromBoussinesq,Cauchy,Fresnel,Green,MacCullagh,Navier,Stokes,Rayleigh,Riemann,Thompson(LordKelvin),andothers(Maxwellusedamorecomplicatedaethermodeltoderivetheequationsofelectromagnetism).Yetinspiteoftheelasticsolid’sconceptualsimplicity,andtheextensiveeffortspentanalyzingit,noexactdescriptionofitsphysicalbehaviorcouldbeproduced.Thereasonforthisfailureisthenon‐Abeliannatureoffiniterotations.Nineteenth‐centuryscientistsdidnothavethemathematicaltoolsneededtodescribearbitraryvariationsoforientation,andevenmoderncondensedmattertheoristshaveshiedawayfromtheattempt(Kleinert1989).Today,themathematicsofrotationsiswell‐understoodforquantummechanicalsystems.Thisfactmakesitreasonabletosupposethatrotationsinclassicalelasticsolidsmightalsobedescribedbysimilarmathematics,therebyremovingthemainbarriertosuccessfulanalysisofclassicalaethermodels.Understandingofsuchclassicalsystemsisalsorelevanttootherfieldssuchasmechanicalengineeringandmaterialsscience.Othertheoriesofelementaryparticlesarenotlikelytohavebroadapplicationtomacroscopicsystems.OnelastquestioniswhetherornotasuccessfulaethertheorywouldbeanimprovementovertheStandardModelofparticlephysics.Theanswerisclearly“yes.”SincetheStandardModelwasbuiltbydeconstructingexperimentaldata,itreliesontwentyormoreempiricalconstantsthathavedefiedanyunifyingexplanation.Anaethertheory,ifsuccessful,wouldprovideaderivationofallphysicalparametersfromasfewasthreefundamentalconstants.Inthecaseofanidealelasticsolidaether,thesewouldbe,e.g.,inertialdensity,bulkmodulus,andshearmodulus.  Theabovediscussionexplainsthemotivationsforresearchintoaethermodelsoftheuniverse.Thisresearchhasledtosomerecentsuccesses,whichmayprovidefurtherinspiration:1.Interpretationofthegaugestructureofthestandardmodelintermsofmotioninalatticeofelasticcells(Schmeltzer2009).2.Derivationofquantummechanicalenergy,momentum,angularmomentum,andcorrelationoperatorsassociatedwithrotationalsolitonwavesinanelasticsolid(Close2010a).3.Explanationofspatialreflectionintermsofknownparticlesusinganewgeometry‐basedparityoperator(Close2010b). References: R.A.Close(2010a)ExactDescriptionofRotationalWavesinanElasticSolid,  AdvancesinAppliedCliffordAlgebras ,tobepublished.R.A.Close(2010b)TheMirrorSymmetryofMatterandAntimatter,  Advancesin AppliedCliffordAlgebras ,tobepublished,2010.H.Kleinert(1989) GuageFieldsinCondensedMatter,Vol.IIStressesandDefects (Singapore:WorldScientific)p.1270.I.Schmelzer(2009)AcondensedmatterinterpretationofSMfermionsandgaugefields, FoundationsofPhysics ,vol.39,nr.1,p.73.
View more
3 pages
Free
26 views
0 times
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks